Universal Reinforcement Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Reinforcement Learning Algorithms: Survey and Experiments

Many state-of-the-art reinforcement learning (RL) algorithms typically assume that the environment is an ergodic Markov Decision Process (MDP). In contrast, the field of universal reinforcement learning (URL) is concerned with algorithms that make as few assumptions as possible about the environment. The universal Bayesian agent AIXI and a family of related URL algorithms have been developed in...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning C3.3 Delayed reinforcement learning

See the abstract for Chapter C3. Delayed reinforcement learning (RL) concerns the solution of stochastic optimal control problems. In this section we formulate and discuss the basics of such problems. Solution methods for delayed RL will be presented in Sections C3.4 and C3.5. In these three sections we will mainly consider problems in which C3.4, C3.5 the state and control spaces are finite se...

متن کامل

Reinforcement learning and neural reinforcement learning

In this paper, we address an under-represented class of learning algorithms in the study of connectionism: reinforcement learning. We first introduce these classic methods in a new formalism which highlights the particularities of implementations such as Q-Learning, QLearning with Hamming distance, Q-Learning with statistical clustering and Dyna-Q. We then present in this formalism a neural imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2010

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2010.2043762